"""Functions to load sample data."""importpandasaspdfrompygmt.srcimportwhich
[docs]defload_japan_quakes():""" Load a table of earthquakes around Japan as a pandas.DataFrame. Data is from the NOAA NGDC database. This is the ``@tut_quakes.ngdc`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are year, month, day, latitude, longitude, depth (in km), and magnitude of the earthquakes. """fname=which("@tut_quakes.ngdc",download="c")data=pd.read_csv(fname,header=1,sep=r"\s+")data.columns=["year","month","day","latitude","longitude","depth_km","magnitude",]returndata
[docs]defload_ocean_ridge_points():""" Load a table of ocean ridge points for the entire world as a pandas.DataFrame. This is the ``@ridge.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude and latitude. """fname=which("@ridge.txt",download="c")data=pd.read_csv(fname,sep=r"\s+",names=["longitude","latitude"],skiprows=1,comment=">")returndata
[docs]defload_sample_bathymetry():""" Load a table of ship observations of bathymetry off Baja California as a pandas.DataFrame. This is the ``@tut_ship.xyz`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude, latitude, and bathymetry. """fname=which("@tut_ship.xyz",download="c")data=pd.read_csv(fname,sep="\t",header=None,names=["longitude","latitude","bathymetry"])returndata
[docs]defload_usgs_quakes():""" Load a table of global earthquakes form the USGS as a pandas.DataFrame. This is the ``@usgs_quakes_22.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Use ``print(data.describe())`` to see the available columns. """fname=which("@usgs_quakes_22.txt",download="c")data=pd.read_csv(fname)returndata
[docs]defload_fractures_compilation():""" Load a table of fracture lengths and azimuths as hypothetically digitized from geological maps as a pandas.DataFrame. This is the ``@fractures_06.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Use ``print(data.describe())`` to see the available columns. """fname=which("@fractures_06.txt",download="c")data=pd.read_csv(fname,header=None,sep=r"\s+",names=["azimuth","length"])returndata[["length","azimuth"]]
[docs]defload_hotspots():""" Load a table with the locations, names, and suggested symbol sizes of hotspots. This is the ``@hotspots.txt`` dataset used in the GMT tutorials, with data from Mueller, Royer, and Lawver, 1993, Geology, vol. 21, pp. 275-278. The main 5 hotspots used by Doubrovine et al. [2012] have symbol sizes twice the size of all other hotspots. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table with columns "longitude", "latitude", "symbol_size", and "placename". """fname=which("@hotspots.txt",download="c")columns=["longitude","latitude","symbol_size","place_name"]data=pd.read_table(filepath_or_buffer=fname,sep="\t",skiprows=3,names=columns)returndata
[docs]defload_mars_shape():""" Load a table of data for the shape of Mars. This is the ``@mars370d.txt`` dataset used in GMT examples, with data and information from Smith, D. E., and M. T. Zuber (1996), The shape of Mars and the topographic signature of the hemispheric dichotomy. Data columns are "longitude," "latitude", and "radius (meters)." The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table with columns "longitude", "latitude", and "radius(m)". """fname=which("@mars370d.txt",download="c")data=pd.read_csv(fname,sep="\t",header=None,names=["longitude","latitude","radius(m)"])returndata